在以上理论的指导下,田永君及其合作者首先采用一种具有类似俄罗斯套娃结构的洋葱氮化硼纳米颗粒为原料成功地合成出透明的纳米孪晶结构立方氮化硼,硬度达到108 GPa,超过金刚石单晶。孪晶平均厚度仅为3.8 nm,远低于传统知识中人们普遍认为的材料硬化的下限值,此时材料不仅没出现软化,反而持续硬化。更可喜的是,材料韧性和抗氧化温度也同时得到了明显提高。 Under the guidance of the above theory, Tian Yongjun and his collaborators first an onion boron nitride nano particles similar tomatryoshka structure as raw material was successfully synthesizednano twin structures of cubic boron nitride transparent, hardness reaches 108 GPa, exceeding the diamond single crystal. Twinaverage thickness is only 3.8 of nm, well below the lower limit of thematerial hardening people generally believe that the traditional knowledge of value, this material is not only not softened, but continued to hardening. What's more, toughness and oxidation resistance of materials also have been improved obviously. 其次,根据2012年提出的理论模型,他们认为多晶共价材料的硬化机制除了大家熟知的霍尔-佩奇效应,还有量子限域效应的附加贡献。由此可以断言:量子限域效应带来的硬化完全可以补偿反霍尔-佩奇效应引起的软化;随显微组织尺寸减小,多晶共价材料可以持续硬化却不发生软化。该研究的实验数据证实了这一论断,从而突破了人们对材料硬化机制的传统认识,为发展高性能超硬材料指明了方向。如果将这一原理和技术应用于其他材料特别是金刚石,其硬度、韧性和稳定性将得到大幅度提高,新的硬度记录将会诞生,这将对世界机械加工业的发展产生深远影响。 Secondly, according to the theoretical model proposed in 2012, they think of polycrystalline covalent material hardening mechanism in addition to Holzer - known as the page effect, and quantum confinement effect additional contribution. It can be asserted:quantum limit hardening domain effect can compensate the softening- Holzer - Page effect; microstructure with reduced size,polycrystalline covalent (Editor:admin) |